
1 © 2013 InterDigital, Inc. All rights reserved. 1

Xiaoyu Xiu, Yuwen He, Yan Ye

InterDigital Communications, Inc.

17th JCT-VC meeting, Mar/Apr
2014

JCTVC-Q0106

Rext HLS: On Lossless

Coding

2 © 2013 InterDigital, Inc. All rights reserved. 2

Introduction

• In Rext draft 6, lossy coding is enabled at sequence/picture
level, whereas lossless coding is only enabled at CU level
• Set transquant_bypass_enabled_flag at PPS level to 1

• Set cu_transquant_bypass_flag at CU level to 1 → inverse
quantization, inverse transform, deblocking, and SAO are all
bypassed

• When transquant_bypass_enabled_flag = 0,
cu_transquant_bypass_flag is not sent and is inferred to be 0

• Proposal: enable sequence/picture level lossless coding for
typical lossless applications with the following benefits
• Simplified syntax parsing

• More optimized decoder initialization

• Encoder and decoder speed-up

3 © 2013 InterDigital, Inc. All rights reserved. 3

Option 1: signaling in PPS extension

pic_parameter_set_rbsp() { Descriptor

…

 if(pps_extension_flag[0]) {

 if(!transquant_bypass_enabled_flag)

 transquant_bypass_default_flag u(1)

 if(transform_skip_enabled_flag && !transquant_bypass_default_flag)

 log2_max_transform_skip_block_size_minus2 ue(v)

 cross_component_prediction_enabled_flag u(1)

 if(!transquant_bypass_default_flag)

 chroma_qp_adjustment_enabled_flag u(1)

 if(chroma_qp_adjustment_enabled_flag) {

 …

 }

 if(!transquant_bypass_default_flag) {

 log2_sao_offset_scale_luma ue(v)

 log2_sao_offset_scale_chroma ue(v)

 }

 }

…

}

transquant_bypass_default_flag specifies the inferred value of cu_transquant_bypass_flag when
transquant_bypass_enabled_flag is equal to 0. When transquant_bypass_default_flag is not present, it
is inferred to be equal to 0.

cu_transquant_bypass_flag equal to 1 specifies that the scaling and transform process as specified
in subclause 8.6 and the in-loop filter process as specified in subclause 8.7 are bypassed. When
cu_transquant_bypass_flag is not present, it is inferred to be equal to transquant_bypass_default_flag.

4 © 2013 InterDigital, Inc. All rights reserved. 4

Option 1: bitstream conformance requirements

• PPS syntax elements related to transform, quantization, and loop filtering:
• transform_skip_enabled_flag
• cu_qp_delta_enabled_flag
• pps_cb_qp_offset, pps_cr_qp_offset
• pps_slice_chroma_qp_offsets_present_flag
• loop_filter_across_tiles_enabled_flag
• pps_loop_filter_across_slices_enabled_flag
• pps_scaling_list_data_present_flag

• Slice header syntax elements related to transform, quantization, and loop
filtering:
• slice_sao_luma_flag
• slice_sao_chroma_flag
• slice_qp_delta

• Proposed bitstream conformance requirements:
• The above syntax elements shall be equal to 0 when

transquant_bypass_default_flag is equal to 1

5 © 2013 InterDigital, Inc. All rights reserved. 5

Option 2: signaling in SPS extension

seq_parameter_set_rbsp() { Descriptor
 …
 sps_extension_present_flag u(1)
 if(sps_extension_present_flag) {
 for(i = 0; i < 1; i++)
 sps_extension_flag[i] u(1)
 sps_extension_7bits u(7)
 if(sps_extension_flag[0]) {
 transquant_bypass_default_flag u(1)
 transform_skip_rotation_enabled_flag u(1)
 transform_skip_context_enabled_flag u(1)
 …

 }
 if(sps_extension_7bits)
 while(more_rbsp_data())
 sps_extension_data_flag u(1)
 }
 rbsp_trailing_bits()
}

transquant_bypass_default_flag specifies the inferred value of cu_transquant_bypass_flag when
transquant_bypass_enabled_flag is equal to 0. When transquant_bypass_default_flag is not present, it
is inferred to be equal to 0.

cu_transquant_bypass_flag equal to 1 specifies that the scaling and transform process as specified
in subclause 8.6 and the in-loop filter process as specified in subclause 8.7 are bypassed. When
cu_transquant_bypass_flag is not present, it is inferred to be equal to transquant_bypass_default_flag.

6 © 2013 InterDigital, Inc. All rights reserved. 6

Option 2: bitstream conformance requirements

• SPS syntax elements related to transform, quantization, and loop filtering:
• scaling_list_enabled_flag
• sample_adaptive_offset_enabled_flag

• PPS syntax elements related to transform, quantization, and loop filtering:
• transform_skip_enabled_flag
• transquant_bypass_enabled_flag
• cu_qp_delta_enabled_flag
• pps_cb_qp_offset, pps_cr_qp_offset
• pps_slice_chroma_qp_offsets_present_flag
• loop_filter_across_tiles_enabled_flag
• pps_loop_filter_across_slices_enabled_flag
• pps_scaling_list_data_present_flag

• Slice header syntax elements related to transform, quantization, and loop filtering:
• slice_qp_delta

• Proposed bitstream conformance requirements:
• The above syntax elements shall be equal to 0 when transquant_bypass_default_flag is

equal to 1

7 © 2013 InterDigital, Inc. All rights reserved. 7

• transform_tree() signals split_transform_flag, cbf_luma, cbf_cb and cbf_cr flags,
followed by the coefficients

• For lossless coding, bypassing TU quad-tree splitting can significantly speedup
encoder by skipping the RDO process
• Small performance loss

• Additional proposed bitstream conformance requirement:
• When transquant_bypass_default_flag is equal to 1,

max_transform_hierarchy_depth_inter and max_transform_hierarchy_depth_intra shall
be 1, and log2_diff_max_min_transform_block_size in SPS shall be equal to 0

Option 2: on transform_tree() syntax

transform_tree(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx) { Descriptor

 if(log2TrafoSize <= Log2MaxTrafoSize &&

 log2TrafoSize > Log2MinTrafoSize &&

 trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && (trafoDepth = = 0)))

 split_transform_flag[x0][y0][trafoDepth] ae(v)

 ….

}

8 © 2013 InterDigital, Inc. All rights reserved. 8

Simulation settings

• The proposed SPS signaling (Option 2) was

implemented in HM-13.0+RExt-6.0

• Two sets of simulations:

• Set 1: bitstream restriction on transform splitting was

not applied

• Set 2: bitstream restriction on transform splitting was

applied

• Option 1’s performance and encoding/decoding

speed should be similar to Set 1

9 © 2013 InterDigital, Inc. All rights reserved. 9

Simulation Results (1)

Average bit-rate increase

 AI RA LB

Class F 0.0% -0.1% -0.1%

Class B 0.0% 0.0% 0.0%

RGB 4:4:4 SC 0.0% -0.1% -0.1%

RGB 4:4:4 Animation 0.0% 0.0% 0.0%

YCbCr 4:4:4 SC 0.0% -0.1% -0.1%

YCbCr 4:4:4 Animation 0.0% 0.0% 0.0%

RangeExt 0.0% 0.0% 0.0%

RGB 4:4:4 SC (Optional) 0.0% -0.1% -0.3%

YCbCr 4:4:4 SC (Optional) 0.0% -0.1% -0.4%

Enc Time[%] 99% 99% 100%

Dec Time[%] 88% 90% 89%

Average bit-rate increase

 AI RA LB

Class F 0.0% -0.1% -0.1%

Class B 0.0% 0.0% 0.0%

RGB 4:4:4 SC 0.0% -0.1% -0.1%

RGB 4:4:4 Animation 0.0% 0.0% 0.0%

YCbCr 4:4:4 SC 0.0% -0.1% -0.1%

YCbCr 4:4:4 Animation 0.0% 0.0% 0.0%

RangeExt 0.0% 0.0% 0.0%

RGB 4:4:4 SC (Optional) 0.0% -0.1% -0.3%

YCbCr 4:4:4 SC (Optional) 0.0% -0.1% -0.4%

Enc Time[%] 99% 99% 100%

Dec Time[%] 88% 90% 89%

Set 1: same performance in AI, small performance gain in RA and LB

More than 10% decoder speed up

10 © 2013 InterDigital, Inc. All rights reserved. 10

Simulation Results (2)

Average bit-rate increase

 AI RA LB

Class F 0.5% 0.6% 0.5%

Class B 0.1% 0.2% 0.2%

RGB 4:4:4 SC 1.3% 1.5% 1.2%

RGB 4:4:4 Animation 0.2% 0.5% 0.6%

YCbCr 4:4:4 SC 1.4% 1.4% 1.4%

YCbCr 4:4:4 Animation 0.1% 0.4% 0.5%

RangeExt 0.0% 0.1% 0.1%

RGB 4:4:4 SC (Optional) 1.5% 1.3% 2.6%

YCbCr 4:4:4 SC (Optional) 1.5% 1.7% 0.3%

Enc Time[%] 70% 65% 68%

Dec Time[%] 72% 79% 73%

Significant encoder and decoder speed up

Set 2: AI 0.5%, RA 0.6%, LB 0.6% loss for mandatory sequences

11 © 2013 InterDigital, Inc. All rights reserved. 11

Conclusion

• Typical lossless video applications use sequence/picture
level lossless coding

• Propose to enable high level signaling of lossless coding
• Add transquant_bypass_default_flag in PPS or SPS

extension
• Add bitstream conformance constraints to syntax elements

related to transform, quantization, deblocking, and SAO

• Simulations show that
• Without TU splitting constraint, >10% decoding speedup

and small performance gain
• With TU splitting constraint, >30% encoding speedup, >20%

decoding speedup, and ~0.5% performance loss

