
JCTVC-M0263

AHG13: SHVC Upsampling with
phase offset adjustment

David Baylon, Ajay Luthra and Koohyar Minoo

Problem(s) Being Addressed

In the current SHM the interpolation filters are
fixed. This will have the following implications:

1. The down-sampling phase offset should be known
during the up-sampling process. Currently these
phase offsets are assumed to be known.

2. To cover a reasonable number of sub-pixel positions
at the base layer SHVC needs a large number of
filters (currently 12 or 16 for each Luma and
Chroma) to be designed (and tested!).

Compensating for the down-sampling
phase offset

With the exception of mandating the phase
offset used during down-sampling, the following
two solutions are proposed.
1. The phase offset is signaled for vertical and

horizontal directions per Luma and Chroma.

2. Encoder signals the filter coefficients for each sub-
pixel filter index (Indices are calculated assuming
zero phase offset). The filter coefficients will make
sure the interpolation for each index has the proper
phase shift.

Solution #1: Syntax for signaling the
phase offset

pic_parameter_set_rbsp() { Descriptor

 pps_pic_parameter_set_id ue(v)

 pps_seq_parameter_set_id ue(v)

 if(nuh_layer_id > 0 && InterLayerTextureRlEnableFlag) {

 luma_phase_offset[0] se(v)

 luma_phase_offset[1] se(v)

 chroma_phase_offset[0] se(v)

 chroma_phase_offset[1] se(v)

 }

 . . .

}

Solution #1: Signaling the phase offset
• The variable xRef16 is derived as follow:

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2) / ScaledW (G-3)

• The variable yRef16 is derived as follows:

• – If cIdx is equal to 0, the variables xRef16 and yRef16 isare derived as follows:

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2) / ScaledW + luma_phase_offset[0] (G-3)

• yRef16 = (yP * PicHRL * 16 + ScaledH / 2) / ScaledH + luma_phase_offset[1] (G-4)

• – Otherwise, the variables xRef16 and yRef16 isare derived as follows:

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2) / ScaledW + chroma_phase_offset[0] (G-5)

• yRef16 = (yP * PicHRL * 16 + ScaledH / 2) / ScaledH – offset + chroma_phase_offset[1]
 (G-6)

• where the value of offset is derived as follows:

• if (ScaledH is equal to PicHRL)
 offset = 0
 otherwise if (ScaledH is equal to 1.5 * PicHRL)
 offset = 1
 otherwise if (ScaledH is equal to 2.0 * PicHRL)
 offset = 2

Solution #2: Signaling the filter
coefficients

- Number of sub-pixel positions and filter coefficients
for each position are signaled.

- The filter indices are calculated based on scaling
factor while assuming a zero-phase shift.

- The coefficients at each index accommodate for the
proper sub-pixel position.

- Example for 2X spatial scaling with 0.25 phase offset:
• Number of filters: 2

• f(0) = { -1, 4, -10, 58, 17, -5, 1, 0 }

• f(1) = { 0, 1, -5, 17, 58, -10, 4, -1 }

Solution #2: Syntax for signaling the
filter coefficients

pic_parameter_set_rbsp() { Descriptor

 pps_pic_parameter_set_id ue(v)

 pps_seq_parameter_set_id ue(v)

 if(nuh_layer_id > 0 && InterLayerTextureRlEnableFlag) {

 for(i = 0; i < 2; i++) {

 num_ phase_offsets_minus1[i] ue(v)

 for(j = 0; j <= num_ phase_offsets_minus1[i]; j++) {

 luma_pixel_shift_flag[i][j] u(1)

 ref_luma_filter_indx[i][j] ue(v)

 for(k = 0; k < num_luma_taps; k++) {

 delta_luma_filter_coef[i][j][k] se(v)

 }

 chroma_pixel_shift_flag[i][j] u(1)

 ref_chroma_filter_indx[i][j] ue(v)

 for(k = 0; k < num_chroma_taps; k++) {

 delta_chroma_filter_coef[i][j][k] se(v)

 }

 }

 }

 }

 . . .

}

Solution #2: Signaling the filter
coefficients

• The variable xRef16 is derived as follows:

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2) / ScaledW (G-3)

• The variable yRef16 is derived as follows:

• – If cIdx is equal to 0, the The variables xRefphase and yRefphase yRef16 isare derived as follows:

• xRef16 xRefphase = (xP * PicWRL * (num_ phase_offsets_minus1[0] + 1) 16 + ScaledW / 2) / ScaledW (G-3)

• yRef16 yRefphase = (yP * PicHRL * (num_ phase_offsets_minus1[1] + 1) 16 + ScaledH / 2) / ScaledH (G-4)

• – Otherwise, the variable yRef16 is derived as follow:

• yRef16 = (yP * PicHRL * 16 + ScaledH / 2) / ScaledH – offset (G-5)

• where the value of offset is derived as follows:

• if (ScaledH is equal to PicHRL)
 offset = 0
 otherwise if (ScaledH is equal to 1.5 * PicHRL)
 offset = 1
 otherwise if (ScaledH is equal to 2.0 * PicHRL)
 offset = 2

• The variables xRef and xPhase are derived by

• xRef = (xRef16 >> 4) (xRefphase / (num_ phase_offsets_minus1[0] + 1)) (G-7),(G-15)

• xPhase = (xRef16) % 16 (xRefphase – xRef * (num_ phase_offsets_minus1[0] + 1)) (G-8),(G-16)

• The variables yRef and yPhase are derived by

• yRef = (yRef16 >> 4) (yRefphase / (num_ phase_offsets_minus1[1] + 1)) (G-9),(G-17)

• yPhase = (yRef16) % 16 (yRefphase – yRef * (num_ phase_offsets_minus1[1] + 1)) (G-10),(G-18)

Note: In this case there is no need for rounding operation to find
the closest sub-pel position (just truncation).

Summary

• Need to signal the phase offset

• Advantages of signaling coefficients:
– Compensating for arbitrary phase shift due to down-

sampling with a small number of filters

– No need to design and verify a large set of fixed of
filters, given the limited test conditions available and
affordable.

– No need for rounding, during phase index derivation

– Propose further study of Adaptive Upsampling Filters in
regards to coding efficiency and possible new
applications possible by supporting adaptive filter
coefficients.

