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Problem(s) Being Addressed 

In the current SHM the interpolation filters are 
fixed. This will have the following implications: 

1. The down-sampling phase offset should be known 
during the up-sampling process. Currently these 
phase offsets are assumed to be known.  

2. To cover a reasonable number of sub-pixel positions 
at the base layer SHVC needs a large number of 
filters (currently 12 or 16 for each Luma and 
Chroma) to be designed (and tested!).   

 



Compensating for the down-sampling 
phase offset 

With the exception of mandating the phase 
offset used during down-sampling, the following 
two solutions are proposed. 
1. The phase offset is signaled for vertical and 

horizontal directions per Luma and Chroma. 

2. Encoder signals the filter coefficients for each sub-
pixel filter index (Indices are calculated assuming 
zero phase offset). The filter coefficients will make 
sure the interpolation for each index has the proper 
phase shift.  

 



Solution #1: Syntax for signaling the 
phase offset 

pic_parameter_set_rbsp( ) { Descriptor 

 pps_pic_parameter_set_id ue(v) 

 pps_seq_parameter_set_id ue(v) 

 if( nuh_layer_id > 0 && InterLayerTextureRlEnableFlag ) { 

  luma_phase_offset[ 0 ] se(v) 

  luma_phase_offset[ 1 ] se(v) 

  chroma_phase_offset[ 0 ] se(v) 

  chroma_phase_offset[ 1 ] se(v) 

 } 

     . . . 

} 



Solution #1: Signaling the phase offset 
• The variable xRef16 is derived as follow: 

• xRef16 = ( xP * PicWRL * 16 + ScaledW / 2) / ScaledW  (G-3) 

• The variable yRef16 is derived as follows: 

•  –  If cIdx is equal to 0, the variables xRef16 and yRef16 isare derived as follows: 

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2 ) / ScaledW + luma_phase_offset[ 0 ] (G-3) 

• yRef16 = (yP * PicHRL * 16 + ScaledH / 2 ) / ScaledH + luma_phase_offset[ 1 ] (G-4) 

•  –  Otherwise, the variables xRef16 and yRef16 isare derived as follows: 

• xRef16 = (xP * PicWRL * 16 + ScaledW / 2 ) / ScaledW + chroma_phase_offset[ 0 ] (G-5) 

• yRef16 = ( yP * PicHRL * 16 + ScaledH / 2 ) / ScaledH – offset + chroma_phase_offset[ 1 ]
 (G-6) 

• where the value of offset is derived as follows: 

•   if (ScaledH  is equal to PicHRL ) 
   offset = 0 
  otherwise if (ScaledH  is equal to 1.5 * PicHRL ) 
   offset = 1 
  otherwise if (ScaledH  is equal to 2.0 * PicHRL ) 
   offset = 2 

 



Solution #2: Signaling the filter 
coefficients 

- Number of sub-pixel positions and filter coefficients 
for each position are signaled. 

- The filter indices are calculated based on scaling 
factor while assuming a zero-phase shift.  

- The coefficients at each index accommodate for the 
proper sub-pixel position.  

- Example for 2X spatial scaling with 0.25 phase offset: 
• Number of filters: 2 

• f(0) = { -1, 4, -10, 58, 17,  -5, 1,  0 } 

• f(1) = {  0, 1,  -5, 17, 58, -10, 4, -1 } 

 



Solution #2: Syntax for signaling the 
filter coefficients 

pic_parameter_set_rbsp( ) { Descriptor 

 pps_pic_parameter_set_id ue(v) 

 pps_seq_parameter_set_id ue(v) 

 if( nuh_layer_id > 0 && InterLayerTextureRlEnableFlag ) { 

      for( i = 0; i < 2; i++ ) { 

      num_ phase_offsets_minus1[ i ] ue(v) 

      for( j = 0; j <= num_ phase_offsets_minus1[ i ]; j++ ) { 

            luma_pixel_shift_flag[ i ][ j ] u(1) 

                 ref_luma_filter_indx[ i ][ j ] ue(v) 

                 for( k = 0; k < num_luma_taps; k++ ) { 

              delta_luma_filter_coef[ i ][ j ][ k ] se(v) 

                 } 

            chroma_pixel_shift_flag[ i ][ j ] u(1) 

                 ref_chroma_filter_indx[ i ][ j ] ue(v) 

                 for( k = 0; k < num_chroma_taps; k++ ) { 

              delta_chroma_filter_coef[ i ][ j ][ k ] se(v) 

                 } 

             } 

         } 

     } 

     . . . 

} 



Solution #2: Signaling the filter 
coefficients 

• The variable xRef16 is derived as follows: 

• xRef16 = ( xP * PicWRL * 16 + ScaledW / 2) / ScaledW  (G-3) 

• The variable yRef16 is derived as follows: 

•  –  If cIdx is equal to 0, the The variables xRefphase and yRefphase yRef16 isare derived as follows: 

• xRef16 xRefphase = (xP * PicWRL * (num_ phase_offsets_minus1[ 0 ] + 1) 16 + ScaledW / 2 ) / ScaledW (G-3) 

• yRef16 yRefphase = (yP * PicHRL * (num_ phase_offsets_minus1[ 1 ] + 1) 16 + ScaledH / 2 ) / ScaledH (G-4) 

•   – Otherwise, the variable yRef16 is derived as follow: 

• yRef16 = ( yP * PicHRL * 16 + ScaledH / 2 ) / ScaledH – offset (G-5) 

• where the value of offset is derived as follows: 

•   if (ScaledH  is equal to PicHRL ) 
   offset = 0 
  otherwise if (ScaledH  is equal to 1.5 * PicHRL ) 
   offset = 1 
  otherwise if (ScaledH  is equal to 2.0 * PicHRL ) 
   offset = 2 

• The variables xRef and xPhase are derived by 

• xRef     = ( xRef16 >> 4 ) ( xRefphase / (num_ phase_offsets_minus1[ 0 ] + 1) ) (G-7),(G-15) 

• xPhase = ( xRef16 ) % 16 ( xRefphase – xRef * (num_ phase_offsets_minus1[ 0 ] + 1) ) (G-8),(G-16) 

• The variables yRef and yPhase are derived by 

• yRef     = ( yRef16 >> 4 ) ( yRefphase / (num_ phase_offsets_minus1[ 1 ] + 1) ) (G-9),(G-17) 

• yPhase = ( yRef16 ) % 16 ( yRefphase – yRef * (num_ phase_offsets_minus1[ 1 ] + 1) ) (G-10),(G-18) 

Note: In this case there is no need for rounding operation to find 
the closest sub-pel position (just truncation). 



Summary 

• Need to signal the phase offset  

• Advantages of signaling coefficients: 
– Compensating for arbitrary phase shift due to down-

sampling with a small number of filters 

– No need to design and verify a large set of fixed of 
filters, given the limited test conditions available and 
affordable.  

–  No need for rounding, during phase index derivation  

–  Propose further study of Adaptive Upsampling Filters in 
regards to coding efficiency and possible new 
applications possible by supporting adaptive filter 
coefficients.  


