
PAGE 1

www.qualcomm.com/qct

JCTVC-K0258
I_PCM Signalling

M. Coban, R. Joshi, M. Karczewicz

PAGE 2

I_PCM Signalling

 Current WD 8 scheme (Burst I_PCM):

 Signals starts of a PCM block (pcm_flag) followed by signalling of number of subsequent
I_PCM blocks (0-3) (num_subsequent_pcm) that follow the first I_PCM unit at a layer of
CTB.

 Main motivation: increase throughput of PCM data while reducing side information bits
[JCTVC-H0051]

 Motivation:

 Bit constraint for CABAC is defined at CTU level.

 HW CABAC engines typically operate at the granularity of a CTU or higher

 I_PCM mode is applied at CTU level in order to meet the bit constraint or cycle budget to
encode the bits

 Once a switch to I_PCM mode is made at a CU, I_PCM mode would be used until the
end of the CTU

 Proposal:

 Use the existing pcm_flag to signal the starting point of I_PCM samples within a CTU that
lasts until the end of the CTU.

PAGE 3

Proposed syntax

 WD 8 syntax

 Proposed syntax

……. …….

PAGE 4

Results: BD Rate (JCTVC-J1100)

Y U V

AI-Main 0.0% 0.0% 0.0%

RA-Main 0.0% 0.0% 0.0%

LB-Main 0.0% 0.0% 0.0%

Anchor: HM 8.0 with I_PCM enabled

CTC: I_PCM is not chosen

PAGE 5

Conclusion

 Simpler, more CABAC friendly I_PCM signalling using only existing pcm_flag
syntax

 Recommend adoption of this proposal.

 We thank MediaTek for cross-checking (JCTVC-K0300).

PAGE 6

WD changes

coding_unit(x0, y0, log2CbSize) { Descriptor

 ….

 if(PredMode[x0][y0] = = MODE_INTRA) {

 if(PartMode = = PART_2Nx2N && pcm_enabled_flag &&

 log2CbSize >= Log2MinIPCMCUSize &&

 log2CbSize <= Log2MaxIPCMCUSize)

 pcm_flag ae(v)

 if(pcm_flag) {

 PCMFlag = 1

 num_subsequent_pcm tu(3)

 NumPCMBlock = num_subsequent_pcm + 1

 while(!byte_aligned())

 pcm_alignment_zero_bit f(1)

 pcm_sample(x0, y0, log2CbSize)

 } else {

…………………………….

coding_quadtree(x0, y0, log2CbSize, ctDepth) { Descriptor

 if(x0 + (1 << log2CbSize) <= pic_width_in_luma_samples &&

 y0 + (1 << log2CbSize) <= pic_height_in_luma_samples &&

 log2CbSize > Log2MinCbSize && PCMFlag NumPCMBlock = = 0)

 split_cu_flag[x0][y0] ae(v)

…………………….

 } else {

 if(PCMFlag NumPCMBlock = = 0)

 coding_unit(x0, y0, log2CbSize)

 else

 pcm_sample(x0, y0, log2CbSize)

 }

}

coding_tree_unit(xCtb, yCtb) { Descriptor

 NumPCMBlock = 0

 PCMFlag = 0

 xCtb = InverseRasterScan(CtbAddrRS, CtbSize, CtbSize, pic_width_in_luma_samples, 0)

 ………………….

PAGE 7

WD changes

9.1 Parsing process for Truncated Unary codes

This process is invoked when the descriptor of a syntax element in the syntax tables in
subclause 7.3 is equal to tu(n).

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as tu(n) are truncated unary coded. The range of possible values
for the syntax element is determined first. The range of this syntax element may be
between 0 and n, with n being greater than or equal to 1 and the range is used in the
derivation of the value of the syntax element value. codeNum which is equal to the value of
the syntax element is given by a process specified as follows:

codeNum = 0
keepGoing = 1
for(i = 0; i < n && keepGoing; i++){
 keepGoing = read_bits(1) (9-1)
 if(keepGoing)
 codeNum ++
}



PAGE 8

WD changes

split_cu_flag[x0][y0] specifies whether a coding unit is split into coding units with half
horizontal and vertical size. The array indices x0, y0 specify the location (x0, y0) of the top-
left luma sample of the considered coding block relative to the top-left luma sample of the
picture.

When split_cu_flag[x0][y0] is not present, the following applies:

 – If log2CbSize is greater than Log2MinCbSizeY and PCMFlag is equal to 0, the value of
split_cu_flag[x0][y0] is inferred to be equal to 1.

 – Otherwise (log2CbSize is equal to Log2MinCbSizeY or the current PCMFlag is not equal to
0), the value of split_cu_flag[x0][y0] is inferred to be equal to 0.

