| -

O

X

S o

c O

> N

w cC

2

Ve

IID

< o

o

N O

on

Ka

)] D

Cl O

S8 T o

Ho 22
&S =

= 3 - >

‘.‘

oo

Yo N
l!o.!.

’.
.‘.‘ ‘.‘.‘h
YAV WAVANRY Kv‘.“g‘a‘.".‘d

|

Introduction

<
Vidyor

* High level syntax for VPS extensions proposed, changes relative to
JCTVC-J1007

1. Simplification of the VPS extension to restrict same number of scalability
attribute dimensions for all layers

Renaming of num_hrd_parameters to num_hrd_operation_points
Operation point signaling using per layer flags

Profile & level signaling for operation points

Profile & level signaling in SPS for enhancement layers

Al S

* Some of the proposed changes (#2, #3) impact the base HEVC
specification VPS, others impact VPS extension

L
1. Scalability attribute dimensions in VPS
extension Vidyor

—eee

* In the first approach to layer_id partitioning described in JCTVC-J1007 section 2.2.1
* num_dimensions_minus1[i] syntax element is sent for each layer i

e dimension_type[i][j] syntax element are sent in a two-dimensional loop, for each layer i
and for each dimension j
¢ There is an error in the syntax table for the j loop, which refers to num_dimensions_minus1 instead
of num_dimensions_minus1[i]
* Propose to simplify the syntax by sending num_dimensions_minus1 only once in
the VPS extension and apply its value to all layers

¢ A single dimensional loop over each layer i can then be used for dimension_type[i | syntax
element

* |f a scalability attribute will be sent for at least one layer, it seems clearer to require that a
value for that attribute be sent for all layers, so that its value is clear for all layers

* Change may increase VPS extension bit count for case when different number of attributes
are sent for different layers, but reduces bit count in typical case when number of attributes
is same for all layers

.0

ZNENENENENENENENENEN

1. Proptosed Syntax for scalability attribute
dimensions in VPS extension

<
Vidyor

vps extension() { Descriptor
while('byte aligned())
vps extension byte alignment reserved zero bit u(l1)
=1 = - ¥
for(] 1.' vps_ax_layers ||_|||_|usl_ :).E
T RAPPHAY GI.IEM' IE. i SGE&_|EE|GI|IE§ dirension 1Ds o
Aiiil _eI|||;|_ens_|9ns “”.“HSJE[.'] - ¥
Ig'(.j Q.j il _ehn_nensmns dilicam amawm o
ell!nnens!en _E§I|[ee_ [][' .][]H @)
!
num_dimensions_minusl u(4)
for(j =0; j <= num_dimensions_minusl; j++)
dimension type[j] u(4)
for(i=1;i<=vps _max_layers minusl;i++)
for(j =0; j <=num_dimensions_minusl; j++)
dimension_id[i][]j] u(8)
/[layer dependency
num direct ref layers[i] u(6)
for(j =0;j <num direct ref layers[i]; j++)
ref layer id[i][j] u(6)
}
}

l ,
2. Renaming of num_hrd_parameters to <
num_hrd_operation_points Vidyor

* Operation points descriptions sent in the initial section of the VPS
(prior to the extension flag) for the HRD, may be re-used in the VPS
extension

¢ |mpacts HEVC base specification, but only as an editorial issue
* Re-naming of the syntax element clarifies that operation point

descriptors, and not just HRD parameters are (optionally) present in
the VPS

2. Proposed syntax for renaming of <€
num_hrd_parameters to num_hrd_operation_points Vidyor

video parameter_set rbsp() { Descriptor

video_parameter_set_id u(4)
vps_temporal_id_nesting_flag u(l)
reserved zero_ 2bits u(2)
max_num_layers _minusl //reserved_zero 6bits u(6)
vps_max_sub_layers_minusl u(3)
profile level(1, vps_max_sub_layers minusl)
next _essential _info _byte offset //reserved zero 12bits u(12)
for(i1=0;1<=vps_max_sub_layers minusl;i++) {

vps_max_dec_pic_buffering[i] ue(v)

vps_max_num_reorder_pics|[i] ue(v)

vps_max_latency increase[i] ue(v)
}
num_hrd_operation_points num—hrd—parameters ue(v)
for(i=0;1<num_hrd_operation_points-rurm—hrd—parameters; i++) {

if(i>0)

operation_point(i)

hrd_parameters(i == 0, vps_max_sub_layers _minusl)

¥

3. Operation point signaling using per layer
flags Vidyo

* Proposed change impacts the HEVC base specification

* Revised signaling of operation point layer signaling is proposed
¢ Simpler
¢ Uses only fixed length coding
¢ Requires fewer syntax elements

¢ Uses fewer bits in typical usage where relatively few layers are present in the
coded bitstream, but does not restrict flexibility

SN SL S ALALATANTS

3. Proposed syntax for operation point ¢
signaling using per layer flags Vidyor
operation_point(opldx) { Descriptor

—op—humayer—id—values—minuslfopldx] ve(v)

for(i=0; 1 <=max_num_layers_minusl; i++)

layer _present_in_op_flag[opldx][i] u(l1)

layer_present_in_op_flag[opldx][i] equal to 1 specifies that layer i is present in
operation point opldx, equal to 0 specifies that layer i is not present in operation point

opldx.

JK0204 °

> >
|

4. Profile & level signaling for operation points Vid;m

—— —

Proposed syntax for profile & level signaling for each operation point
in the VPS extension

Re-use the HRD operation points from the initial section of the VPS
Additional operation points may be sent in the VPS extension
Profile and level indicators optionally sent for all operation points

For each operation point, send a profile_present_flag

¢ When equal to 0, instead of sending the profile related syntax elements for that
operation point, a profile_op_ref syntax element is sent to indicate a reference
profile from a previously sent operation point

4. Proposed syntax for profile & level
signaling for operation points

vps extension() { Descriptor
while('byte aligned())
vps extension byte alignment reserved zero bit u(l)
/I layer specific information
for(i=1;i<=vps max layers minusl; i++) {
/l mapping of layer ID to scalability dimension 1Ds
num _dimensions minusl[i] u(4)
for(j =0; j <= num dimensions minusl; j++) {
dimension type[i][j] u(4)
dimension id[i][j] u(8)
1
I/ layer dependency
num direct ref layers[i] u(6)
for(j =0;j <num direct ref layers[i];j++)
ref layer id[i][j] u(6)
1
// op specific information
num_additional operation_points u(8)
for (i=0;i< num_additional operation points; i++)
operation_point(i + num_hrd_operation_points)
for(i=1;i<=num_hrd_operation_points +
num_additional operation points; i++) {
vps_profile present flag[i] u(l)
if (lvps_profile present flag[i])
profile op ref[i] u(8)

profile_tier_level(vps_profile_present flag[i],
vps_max_sub_layers minusl)

<
Vidyor

num_additional_operation_points
specifies the maximum number of
additional operation points present in the
coded video sequences the video
parameter set applies.

vps_profile_present_flag[i] equalto 1
specifies the profile information for
operation point i is present in the
profile_tier_level() syntax structure.
vps_profile_present flag[i] equal to O
specifies that profile information for
operation point i is not present in the
profile_tier_level() syntax structure.
When vps_profile_present_flag[i] equal
to 0, profile information for operation
point i is inferred to be equal to the profile
information of operation point
profile_op_ref[i].

|

5. Profile & level signaling in SPS for ’
enhancement layers Vidyor

e

* In base HEVC specification, VPS can be considered optional for the
base layer, and hence the profile & level information is duplicated in
the SPS

* For enhancement layers the VPS is required

¢ No need to replicate the profile information signaling in the SPS for enhancement
layers

¢ Add condition to send profile information in SPS only when layer_id is equal to 0

¢ Still send level information in the SPS for enhancement layers, to allow changing
of level for an individual layer without requiring an IDR be sent for all layers

* Interpret level information in the SPS for enhancement layers as applying only to the
individual layer

* Differs from operation point level signaling in the VPS which corresponds to cumulative
layers

Cr

5. Proposed syntax for profile & level »
signaling in SPS for enhancement layers Vidyor

* Proposed constraint definition improves coding efficiency vs. the MVC
and SVC methods
¢ Reducing the number of SPSs required to be transmitted.

¢ Reduced bits for the signaling of the PPS identifier in the coded slice header,
because fewer different SPS id values must be signaled, and hence fewer
different PPS id values

* PPS value in the slice header is variable length entropy coded, such that higher values
require more bits than smaller values

seq_parameter_set rbsp() { Descriptor
video parameter_set_id u(4)
sps_max_sub_layers_minusl u(3)
sps_reserved_zero_bit u(l1)
profile_tier_level(layer id = =0, sps_max_sub_layers_minusl)
seq_parameter_set id ue(v)
chroma_format_idc ue(v)

Conclusion €

* 5 proposed modifications to VPS

1.

Al S

Simplification of the VPS extension to restrict same number of scalability
attribute dimensions for all layers

Renaming of num_hrd_parameters to num_hrd_operation_points
Operation point signaling using per layer flags

Profile & level signaling for operation points

Profile & level signaling in SPS for enhancement layers

* #2 and #3 impact base specification

