
© 2011 InterDigital, Inc. All rights reserved.

JCTVC-H0138

AHG21:Unification of reference

picture list modification processes

Feb.1-10, 2012

Yong He, Yan Ye

InterDigital Communications, LLC

© 2011 InterDigital, Inc. All rights reserved.

Introduction

• Unification of reference picture list modification process
– Two different methods are currently used for L0/L1 modification and for

LC modification

– LC modification is more straightforward

– Propose to use similar methods on L0/L1 modification

– Simplifies syntax, semantics, and decoding process for L0/L1
modification

• Implemented an L0/L1 reordering method in HM5.0 encoder
– Maximizes unique entries in L0 and L1

• Added bit counting for ref_pic_list_modification() in HM5.0
according to JCTVC-G1036
– 47% bit reduction using proposed method for ref_pic_list_modification()

© 2011 InterDigital, Inc. All rights reserved.

Reference picture list modification syntax (WD5.0)

Ref 2 Ref 1

Ref 4 Ref 5

RefPicSetStCurr0

RefPicSetStCurr1

Ref 2 Ref 1 Ref 4 Ref 2Target modified List 0

Ref 2 Ref 1 Ref 4 Ref 5Default List 0

Ref 5Ref 4Ref 1 Ref 2 curr

Ref 2 Ref 1 Ref 4 Ref 5Step 1

Ref 2 Ref 1 Ref 4 Ref 5Step 2

Ref 2 Ref 1 Ref 4 Ref 5Step 3

Ref 2 Ref 1 Ref 4 Ref 2Step 4

Step 5 finish

list_modification_idc ref_pic_set_idx

0 0

0 1

1 0

0 0

3

RefIdx

0

1

2

3

ref_pic_list_modification syntax

© 2011 InterDigital, Inc. All rights reserved.

Proposed reference picture list modification process
• In comparison, LC modification does not use list_modification_idx, instead each entry in the modified LC is

signaled explicitly

• Propose to unify the L0/L1 modification process with LC modification

• Remove list_modification_idc, and use ref_pic_set_idx to indicate the entry into temporary arrays
RefPicSetCurrTempList0/1

Ref 2 Ref 1 Ref 4

Ref 2 Ref 1

Ref 4 Ref 5

ref_pic_set_idx

Ref 5

RefPicSetStCurr0

RefPicSetStCurr1

RefPicSetCurrTempL0

(Default L0)

Ref 2 Ref 1 Ref 4 Ref 2Target modified List 0

0

1

2

0

RefIdx

0

1

2

3

Proposed ref_pic_list_modification syntax

© 2011 InterDigital, Inc. All rights reserved.

Proposed semantics

ref_pic_list_modification_idc modification specified

0 For list 0: ref_pic_set_idx is present and corresponds to an index to RefPicSetStCurr0; For list 1:
ref_pic_set_idx is present and corresponds to an index to RefPicSetStCurr1

1 For list 0: ref_pic_set_idx is present and corresponds to an index to RefPicSetStCurr1; For list 1:
ref_pic_set_idx is present and corresponds to an index to RefPicSetStCurr0

2 ref_pic_set_idx is present and corresponds to an index to RefPicSetLtCurr

3 End loop for modification of the initial reference picture list

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element ref_pic_list_modification_idc ref_pic_set_idx is present

for specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that ref_pic_list_modification_idc is not equal to 3 following

ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

ref_pic_list_modification_flag_l1 equal to 1 specifies that the syntax element ref_pic_list_modification_idc ref_pic_set_idx is present

for specifying reference picture list 1. ref_pic_list_modification_flag_l1 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l1 is equal to 1, the number of times that ref_pic_list_modification_idc is not equal to 3 following

ref_pic_list_modification_flag_l1 shall not exceed num_ref_idx_l1_active_minus1 + 1.

ref_pic_list_modification_idc together with ref_pic_set_idx specifies which of the reference pictures are re-mapped. The values of

ref_pic_list_modification_idc are specified in Table 7-4. The value of the first ref_pic_list_modification_idc that follows immediately

after ref_pic_list_modification_flag_l0 or ref_pic_list_modification_flag_l1 shall not be equal to 3.

Table 7-6 – ref_pic_list_modification_idc operations for modification of reference picture lists

ref_pic_set_idx specifies the index, to RefPicSetStCurr0, RefPicSetStCurr1 or RefPicSetLtCurr, of the reference picture being moved to

the current index in the reference picture list in RefPicSetCurrTempListX to be placed at the current position of reference picture list LX.

The value of ref_pic_set_idx shall be in the range of 0 to max_num_ref_frames, inclusive. If the syntax element ref_pic_set_idx is not

present, it is set to 0.

© 2011 InterDigital, Inc. All rights reserved.

Proposed decoding process for list initialization

1. RefPicSetCurrTempList0 is constructed from RefPicSetStCurr0, RefPicSetStCurr1 and RefPicSetLtCurr.
cIdx = 0

NumRpsCurrTempList0 = NumRpsStCurr0 + NumRpsStCurr1 + NumRpsLtCurr

if (NumRpsCurrTempList0 <= num_ref_idx_l0_active_minus1)

NumRpsCurrTempList0 = num_ref_idx_l0_active_minus1+1

while(cIdx < NumRpsCurrTempList0)
{

for(i=0; i < NumPocStCurr0 && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetStCurr0[i]
for(i=0; i < NumPocStCurr1 && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetStCurr1[i]
for(i=0; i < NumPocLtCurr && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetLtCurr[i]

}

2. If ref_pic_list_modification_flag_l0 is 0, the initial RefPicList0 is constructed by taking the first
num_ref_idx_l0_active_minus1+1 entries from RefPicSetCurrTempList0.

© 2011 InterDigital, Inc. All rights reserved.

Proposed decoding process for list modification

Modification process for reference picture lists
After the invocation of this process, there shall be no reference pictures with greater temporal_id than the

current slice included in the output RefPicList0 or RefPicList1.

When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:

Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in
subclause 8.2.2.3.1 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in
subclause 8.2.2.3.2 is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference
picture list RefPicList0 is finished.

When the current slice is a B slice and ref_pic_list_modification_flag_l1 is equal to 1, the following applies:

Let refIdxL1 be an index into the reference picture list RefPicList1. It is initially set equal to 0.

The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in
subclause 8.2.2.3.1 is invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in
subclause 8.2.2.3.2 is invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference
picture list RefPicList1 is finished.

Modification process of reference picture lists for short-term reference pictures
Input to this process is an index refIdxLX (with X being 0 or 1).

Output of this process is an incremented index refIdxLX.

The variable picNumLXNoWrap is derived as follows.

If ref_pic_list_modification_idc is equal to 0, the following applies.

– If the current reference picture list is RefPicList0, curRefPicSet is set to RefPicSetStCurr0.
– Otherwise (the current reference picture list is RefPicList1), curRefPicSet is set to
RefPicSetStCurr1.

– Otherwise, if ref_pic_list_modification_idc is equal to 1, the following applies.

– If the current reference picture list is RefPicList0, curRefPicSet is set to RefPicSetStCurr1.
– Otherwise (the current reference picture list is RefPicList1), curRefPicSet is set to
RefPicSetStCurr0.

– Otherwise, if ref_pic_list_modification_idc is equal to 2, curRefPicSet is set to RefPicSetLtCurr.

The variable pocLX is derived as follows.

pocLX = curRefPicSet[ref_pic_set_idx] (8-9)

The following procedure is conducted to place the picture picR with PicOrderCnt(picR) equal to pocLX into the
index position refIdxLX, shift the position of any other remaining pictures to later in the list, and
increment the value of refIdxLX.

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
RefPicListX[cIdx] = RefPicListX[cIdx − 1]

RefPicListX[refIdxLX++] = pocLX
nIdx = refIdxLX (8-9)
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++)

if(PicOrderCnt(RefPicListX[cIdx]) != pocLX)
RefPicListX[nIdx++] = RefPicListX[cIdx]

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one
element longer than the length needed for the final list. After the execution of this procedure, only
elements 0 through num_ref_idx_lX_active_minus1 of the list need to be retained.

Proposed modification process for reference picture lists
Input to this process is an array of reference picture RefPicSetCurrTempLX, and the size of

the reference picture list num_ref_idx_lX_active_minus1 (with X being 0 or 1).

Output of this process is an array containing the modified reference picture list RefPicListX.

Let refIdxLX be an index into the reference picture list RefPicListLX. It is initially set equal to

0.

The following process is repeated until refIdxLX is greater than

num_ref_idx_lX_active_minus1+1.

– RefPicListX [refIdxLX++] = RefPicSetCurrTempLX [ref_pic_set_idx]

Benefits of proposed unification:

• Same modification method as LC

• More efficient signaling in many cases

• Easier to describe

• Overall reduction in WD text

o Syntax: 4 lines

o Semantics: ~10 lines + 1 table

o Decoding process: ~35 lines

© 2011 InterDigital, Inc. All rights reserved.

Encoder-only L0/L1 reordering

• Encoder-only L0/L1 reordering is implemented in HM5.0 to

test the proposed change and facilitate bit counting

– Maximize number of unique entries in L0 and L1

8 16

12

10

9 11

14

13 15

0

4

2

1 3

6

5 7

Current GOPPrevious GOP

POC
RPS Initial lists Modified lists

StCurr0 StCurr1 L0 L1 L0 L1

16 {8, 6, 4, 0} {NULL} {8, 6, 4, 0} {8, 6, 4, 0} {8, 6, 4, 0} {8, 6, 4, 0}

12 {8, 6} {16} {8, 6} {16, 8} {8, 6} {16, 8}

10 {8, 6} {12, 16} {8, 6} {12, 16} {8, 6} {12, 16}

9 {8} {10, 12, 16} {8, 10} {10, 12} {8, 12} {10, 16}

11 {10, 8} {12, 16} {10, 8} {12, 16} {10, 8} {12, 16}

14 {12, 10, 8} {16} {12, 10} {16, 12} {12, 10} {16, 8}

13 {12, 8} {14, 16} {12, 8} {14, 16} {12, 8} {14, 16}

15 {14, 12, 8} {16} {14, 12} {16, 14} {14, 12} {16, 8}

© 2011 InterDigital, Inc. All rights reserved.

Simulation results (1)

Rate-distortion performance, reordered LC vs. default LC (HM5.0)

Per picture bit counting, proposed vs. current syntax for L0/L1 modification

Random Access HE Random Access LC Random Access HE-10

Y U V Y U V Y U V

Class A 0.0% 0.0% -0.1% 0.0% 0.0% 0.0% -0.0% -0.3% -0.3%

Class B -0.2% -0.1% -0.1% -0.1% 0.0% -0.1% -0.1% -0.1% -0.1%

Class C -0.1% 0.0% 0.0% 0.0% -0.1% 0.0%

Class D -0.1% -0.2% -0.1% -0.1% 0.0% -0.1%

Class E

Overall -0.1% -0.1% -0.1% -0.1% 0.0% 0.0% -0.1% -0.2% -0.2%

-0.1% -0.1% -0.1% -0.1% 0.0% 0.0% -0.1% -0.2% -0.1%

Class F -0.1% -0.1% 0.0% -0.1% -0.1% -0.1%

POC Modified lists Existing

ref_pic_list_modification()

Proposed

ref_pic_list_modification()L0 L1

16 {8, 6, 4, 0} {8, 6, 4, 0} 2 2

12 {8, 6} {16, 8} 2 2

10 {8, 6} {12, 16} 2 2

9 {8, 12} {10, 16} 26 10

11 {10, 8} {12, 16} 2 2

14 {12, 10} {16, 8} 15 8

13 {12, 8} {14, 16} 2 2

15 {14, 12} {16, 8} 15 8

We would like to thank Canon (JCTVC-H0679) for cross checking our RD results

© 2011 InterDigital, Inc. All rights reserved.

Simulation results (2)

Current syntax Proposed syntax % savings

RA-HE 6677 3566 46.7%

RA-LC 6677 3566 46.7%

RA-10 3399 1818 46.5%

• G1036: Common conditions for reference picture marking and list
construction proposals

– Mandates bit counting for relevant syntax per RAP (random access period)

– Defines additional testing conditions beyond those in G1200

– Software branch HM-5.1-dev-ahg21

• Bit counting per RAP for ref_pic_list_modification() implemented on HM5.0

• Due to time constraint, only G1036 section 2.1 (G1200 RA) was used

• Compare to current syntax, the proposed syntax
– Achieves 47% saving of signaling overhead for ref_pic_list_modification()

© 2011 InterDigital, Inc. All rights reserved.

Conclusion

• Unify L0/L1 list modification with LC modification

• Software changes to HM5.0
– Implemented encoder-only list modification for L0/L1

– Implemented bit counting for ref_pic_list_modification()

• The proposed unification is more efficient:
– ~47% reduction in signaling bits

• WD text reduction and alignment
– Syntax: 4 lines

– Semantics: ~10 lines and 1 table

– Decoding process: ~35 lines

• Suggest to adopt

© 2011 InterDigital, Inc. All rights reserved.

Proposed decoding process for list initialization

1. RefPicSetCurrTempList0 is constructed from RefPicSetStCurr0, RefPicSetStCurr1 and RefPicSetLtCurr.
cIdx = 0

if (ref_pic_list_modification_flag_l0 == 0)

NumRpsCurrTempList0 = num_ref_idx_l0_active_minus1 + 1

else {

NumRpsCurrTempList0 = NumRpsStCurr0 + NumRpsStCurr1 + NumRpsLtCurr

if (NumRpsCurrTempList0 <= num_ref_idx_l0_active_minus1)

NumRpsCurrTempList0 = num_ref_idx_l0_active_minus1+1

}

while(cIdx < NumRpsCurrTempList0)
{

for(i=0; i < NumPocStCurr0 && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetStCurr0[i]
for(i=0; i < NumPocStCurr1 && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetStCurr1[i]
for(i=0; i < NumPocLtCurr && cIdx < NumRpsCurrTempList0; cIdx++, i++)
RefPicSetCurrTempList0 [cIdx] = RefPicSetLtCurr[i]

}

2. If ref_pic_list_modification_flag_l0 is 0, the initial RefPicList0 is equivalent to RefPicSetCurrTempList0.

© 2011 InterDigital, Inc. All rights reserved.

Additional results (1)

Per picture bit counting, proposed (te(v) and u(v) for ref_pic_set_idx) vs.

current syntax for L0/L1 modification

POC Modified lists Existing

ref_pic_list_modifica

tion()

Proposed

ref_pic_list_modificatio

n()

Proposed

ref_pic_list_modificatio

n() with u(v) for

ref_pic_set_idx

L0 L1

16 {8, 6, 4,

0}

{8, 6, 4,

0}

2 2 2

12 {8, 6} {16, 8} 2 2 2

10 {8, 6} {12, 16} 2 2 2

9 {8, 12} {10, 16} 26 10 10

11 {10, 8} {12, 16} 2 2 2

14 {12, 10} {16, 8} 15 8 6

13 {12, 8} {14, 16} 2 2 2

15 {14, 12} {16, 8} 15 8 6

• Additional bit counting

– Apply u(v) instead of te(v) on ref_pic_set_idx

© 2011 InterDigital, Inc. All rights reserved.

Additional Results (2)

• Additional bit counting for one RAP

Current

syntax

Proposed

syntax

% savings Proposed

syntax

with u(v)

% savings

RA-HE 6677 3566 46.7% 3174 52.5%

RA-LC 6677 3566 46.7% 3174 52.5%

RA-10 3399 1818 46.5% 1618 52.4%

© 2011 InterDigital, Inc. All rights reserved.

Back up

L0/L1 size # syntax current # syntax proposed

1 3 1

2 3-5 2

3 3-7 3

4 3-9 4

5 3-11 5

