Bitrate Targeting Tools

Quick-start Guide

Steve Campbell

Jing Wang
Xiang Yu

Research In Motion Ltd.

Introduction

targetBitrates.sh is a shell script that runs the encoder many times while trying to obtain a specific set of

bitrates. It does this by adjusting the Lambda-factors that are passed to the encoder.

encodeCommand.sh is a shell script that is invoked by targetBitrates.sh that runs the encoder.

targetBitrates.sh will typically invoke encodeCommand.sh many times during one run. targetBitrates.sh

also makes use of two executables: extractBitrates.exe and guessLambdaFactors.exe. It is designed to

run in a Bash shell.

Preparation

e Five patch files are included:

O

O

O

O

O

TAppEncCfg.cpp.diff
TAppEncCfg.h.diff
TAppEncTop.cpp.diff
TEncCfg.h.diff
TEncSlice.cpp.diff

Use the patch command to apply these patch files to the corresponding source files of your

encoder. For example:
patch mysourcefolder/App/TAppEncoder/TAppEncCfg.cpp TAppEncCfg.cpp.diff

Apply the patches for all five files and then rebuild your encoder. These patches add the

Lambda-factor arguments to the encoder. These arguments are necessary for controlling the

bitrates.

e Build extractBitrates.exe and guessLambdaFactors.exe. To do this, execute this command in the

folder that contains the source code:

make

e After building, ensure that these files are all in the same directory:

O O O O

targetBitrates.sh
encode.shl
encodeCommand.sh
extractBitrates.exe
guessLambdaFactors.exe



Run targetBitrates.sh
If you run targetBitrates.sh with no arguments, it will output the usage notes. The usage notes for
encodeCommand.sh may also be useful.

Here is an example of a typical set of arguments for targetBitrates.sh

sh ./targetBitrates.sh -q 22 -o "~/myOutputDirectory/" -ci 1dHE BQSquare_416x240_60 -tb
"23:5000 24:34241 25:6541" -ca '-e ~/bin/TAppEncoder.exe -cd ~/cfg/'

This runs targetBitrates.sh for QP 22, for configuration low-delay high-efficiency, and for sequence
BQSquare_416x240_60. The output will be placed in ~/myOutputDirectory. The target bitrates are
specified as “23:5000 24:34241 25:6541”. The encoder is located at ~/bin/TAppEncoder.exe and the
configuration files are in ~/cfg.

In practice, the target bitrates should be extracted from the anchor log files. The first value in target
bitrates should have a QP value that is one greater than the —q option. For example, if “-q 22" is used,
than “23:5000 24:34241 25:6541” would be appropriate target bitrates.

Parameters
The usage of targetBitrates.sh is as follows:
./targetBitrates.sh [-cm] -ci configurationIdentifier -q q -tb targetBitrates [-il

initialLambdaFactors] [-ca encodeCommandArgs] [-ea extraArguments] -o outputDirectory
inputName

e -cm specifies continuation mode which allows the user to resume an execution that was
interrupted before completion.

e configurationldentifier specifies the configuration (IdHE, IdLC, raHE, raLC, inHE, or inLC).
e qisthe QP value (22, 27, 32, or 37).
e targetBitrates is the target bitrates. For example: "23:3445 24:3473 etc...".

e initialLambdaFactors is the Lambda-factors to use for the first guess. For example: "-LF23 1e0 -
LF24 0.98 etc..."

e encodeCommandArgs is the extra arguments to be passed to encodeCommand.sh. The
common arguments that are available to both ./targetBitrates.sh and encodeCommand.sh
should not be passed though this argument. For example, don't pass -q here because it is an
option of ./targetBitrates.sh. -e and (-cp or -cd) must be passed through this argument. For
example, "-ca '-e ~/bin/encode.exe -cd ~/cfg/".

e extraArguments specifies extra arguments to be passed directly to the encoder (not to
encodeCommand.sh).

e outputDirectory is the directory that will contain the output logs, YUV, and bin.



e inputName is the name of the input sequence. Must be one of the following:

o

O OO0 OO OO O0OO0OO0OO0OO0OO0OO0OO0OO0o0OO0OO0OO0OO0OO0O0O0

Output

The output files are all placed in the output directory that is specified by the user. These files include:

e The YUV file. There is only one YUV file as it is repeatedly overwritten with each invocation of

NebutaFestival 2560x1600_60_10bit_crop
SteamLocomotiveTrain_2560x1600_60_10bit_crop
Traffic_2560x1600_30_crop
PeopleOnStreet_2560x1600_30_crop
BQTerrace_1920x1080_60
BasketballDrive_1920x1080_50
Cactus_1920x1080_50
Kimonol_1920x1080_24
ParkScene_1920x1080_24

vidyol 720p_60

vidyo3_720p_60

vidyo4 720p_60
RaceHorses_832x480 30
BQMall_832x480_60
PartyScene_832x480_50
BasketballDrill_832x480_50
RaceHorses_416x240 30
BQSquare_416x240_60
BlowingBubbles 416x240 50
BasketballPass_416x240 50
BasketballDrillText_832x480_50
Chinaspeed_1024x768_30
SlideEditing_1280x720_30
SlideShow_1280x720_20

the encoder.

e The BINfile. There is only one BIN file as it is repeatedly overwritten with each invocation of the

encoder.

e The meta.logfile. This file contains a log for the entire bitrate targeting process. Each line

represents one invocation of the encoder and includes:

o

O

O

e The _final.log file. This is the log from the final invocation of the encoder. The bitrates obtained

The Lambda-factors that were used
The bitrates that were obtained

The percentage above or below the target bitrates of the obtained bitrates

Whether or not this encoding was accepted

from this log were accepted.

e The _dep##.logfiles. These are the log files from all of the invocations of the encoder except for
the final invocation. These logs are labeled as “deprecated” because the bitrates obtained from

these logs were not accepted.



