
1/22/2011 1

Matrix multiplication specification for
HEVC transforms

(JCTVC-D036)

Mangesh Sadafale (*) and M adhukar Budagavi (**)

* Texas Instruments India

** Texas Instruments Dallas

Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

4th Meeting: Daegu, KR, 20-28 January, 2011

1/22/2011 2

JCTVC-D036

Introduction
• Continuation of JCTVC-C266: Matrix multiplication DCT

• JCTVC-226 proposed specification of transform using matrix
multiplication
– 16x16 and 32x32 transform matrices were fixed-point approximations of

DCT/IDCT

– 4x4 and 8x8 transform matrices were retained from AVC
– Quantization matrices used for norm correction were eliminated

• This contribution:
– 16x16 and 32x32 transform matrices are 6-bit approximation of DCT/IDCT

– DCT implemented using even-odd decomposition for achieving speed-up
– Software released to Motorola and Qualcomm for cross-verification.

Thanks to Motorola and Qualcomm for cross-verifying.

• Related contribution:
– JCTVC-D224 (Cisco)

1/22/2011 3

JCTVC-D036

Implementation complexity
• Large size transforms provide coding gain but increase implementation

complexity significantly

• Implementation complexity of large size transforms needs to be studied
carefully
– Important to study both hardware and software implementation complexity

• Hardware codecs are expected to play an increasingly important role in
deployment of HEVC solutions since HEVC is expected to be used for
high definition (HD) and above video resolutions
– Need for HD has already led to hardware acceleration being used for AVC

video coding in desktop, mobile, and portable devices (which are
traditionally thought of as software implementation platforms)

• In software, HEVC codecs can be expected to run on processors that support
extensive SIMD operations

– Already, 8-way SIMD architectures are becoming commonplace

1/22/2011 4

JCTVC-D036

IDCT specification
MAX_TSIZE = 32; // Maximum transform size

IDCTMatrix is of size [MAX_TSIZE][MAX_TSIZE]; // cos () values of DCT

TransposeBuffer is of size [MAX_TSIZE][MAX_TSIZE];

uiDctOffset = MAX_TSIZE/uiSize; // subsampling factor for DCTMatrix

pSrc is input data, pDst is output data

uiSize is transform block size

// D'*Input

for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++)

sum = 0;

for(k=0;k<uiSize;k++)

sum += IDCTMatrix[k*uiDctOffset][i] * pSrc[k*uiSize +j];

TransposeBuffer[i][j] = sum;

// (D'*Input)*D

for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++)

sum = 0;

for(k=0;k<uiSize;k++)

sum += TransposeBuffer[i][k] * IDCTMatrix[k*uiDctOf fset][j];

sum = sum*uiDctScale;

pDst[i*uiStride+j] = sum;

IDCTMatrix[32][32]
gets reused for all
DCT sizes

1/22/2011 5

JCTVC-D036

Quantization

• Existing HM 1.0
– Quantization of 32x32 block: UInt g_aiQuantCoef1024[6][1024];

– Inverse quantization of 32x32 block: UInt g_aiDeQuantCoef1024[6][1024];
– Quantization of 16x16 block: UInt g_aiQuantCoef256[6][256];

– Inverse quantization of 16x16 block: UInt g_aiDeQuantCoef256[6][256];

• Our proposal:
– Quantization of 16x16/32x32 block:

• UInt g_aiQuantCoef256_s[6] = {205,186, 158, 146, 128, 114};
• UInt g_aiQuantCoef1024_s[6] = {102, 93, 79, 73 ,64, 57};

– Inverse quantization of 16x16/32x32 block:
• UInt g_aiDeQuantCoef[6] = {10, 11, 13, 14, 16, 18};

• Memory required for Quant/dequant matrices goes down from 12.5KB
to 6-12 bytes

1/22/2011 6

JCTVC-D036

Intra

99%100%Dec Time[%]

107%100%Enc Time[%]

0.2 0.1 0.0 -0.1 0.0 0.0 All

0.3 0.3 0.0 -0.2 0.0 -0.1 Class E

0.1 0.1 0.0 0.0 0.0 0.0 Class D

0.1 0.1 0.0 -0.1 0.0 0.0 Class C

0.1 0.0 0.0 -0.1 0.0 0.0 Class B

0.5 0.5 -0.1 -0.2 -0.1 0.0 Class A

V BD-rateU BD-rateY BD-rateV BD-rateU BD-rateY BD-rate

Intra LoCoIntra

Encoder simulations were run on Linux cluster. Decoding of
bitstreams was carried out sequentially on a PC with Intel(R)
Core(TM)2 CPU 6600 @ 2.4GHz, 3.25 GB of RAM.

1/22/2011 7

JCTVC-D036

Random access

100%100%Dec Time[%]

96%95%Enc Time[%]

0.1 0.1 -0.1 0.0 0.0 0.0 All

Class E

0.3 -0.2 0.0 0.2 0.1 0.0 Class D

0.2 0.3 0.0 -0.1 -0.2 0.0 Class C

0.0 0.2 -0.1 0.0 -0.1 -0.1 Class B

0.3 0.5 -0.1 0.0 0.1 0.0 Class A

V BD-rateU BD-rateY BD-rateV BD-rateU BD-rateY BD-rate

Random access LoCoRandom access

Encoder simulations were run on Linux cluster. Decoding of
bitstreams was carried out sequentially on a PC with Intel(R)
Core(TM)2 CPU 6600 @ 2.4GHz, 3.25 GB of RAM.

1/22/2011 8

JCTVC-D036

Low delay

100%100%Dec Time[%]

96%93%Enc Time[%]

0.0 0.0 -0.1 -0.3 0.0 0.0 All

0.1 -0.6 -0.3 -0.6 -0.1 -0.2 Class E

-0.1 0.1 -0.1 -0.1 -0.3 0.1 Class D

0.2 0.0 0.0 0.0 0.0 0.0 Class C

0.0 0.2 -0.1 -0.3 0.1 0.0 Class B

Class A

V BD-rateU BD-rateY BD-rateV BD-rateU BD-rateY BD-rate

Low delay LoCoLow delay

Encoder simulations were run on Linux cluster. Decoding of
bitstreams was carried out sequentially on a PC with Intel(R)
Core(TM)2 CPU 6600 @ 2.4GHz, 3.25 GB of RAM.

1/22/2011 9

JCTVC-D036

Complexity analysis

• Multiplication/accumulation bit-width sizes

• Buffer sizes

• Throughput

• Total number of multiplications and additions

• Area

1/22/2011 10

JCTVC-D036

Complexity analysis -
Multiplication/accumulation bit-width sizes

19 bits19 bits24 bits24 bits32x32

19 bits19 bits24 bits25 bits16x16

Intermediate
values after first
transform stage

Input of
Inverse
transform

Intermediate
values after
first transform
stage

Input of
Inverse
transform

MatmultChen's

IBDI On

15 bits15 bits24 bits20 bits32x32

15 bits15 bits24 bits21 bits16x16

Intermediate
values after first
transform stage

Input of
Inverse
transform

Intermediate
values after
first transform
stage

Input of
Inverse
transform

MatmultChen's

IBDI Off

1/22/2011 11

JCTVC-D036

Complexity analysis – Buffer sizes

• Hardware implementation complexity for IDCT
– Compute logic (~50%) + Transpose buffer (~50%)

• Reduction in transpose buffer size leads to direct area savings

• Transpose buffer element size for 16x16, 32x32 transform for IBDI-off
– HM 1.0: 21 bits

– Matrix mult: 15 bits
– ~30% savings in area for transpose buffer in hardware

– Similar savings for IBDI-on

• For IBDI-off in software, number of cycles for fetching intermediate data
goes down by a factor of 2
– 32b data fetch for Chen v/s 16 bit data fetch for matrix multiplication

1/22/2011 12

JCTVC-D036

Complexity analysis - Throughput
• Chen’s algorithm uses multiple stages of butterfly-type of structure

– Introduces serial dependency and leads to multipliers getting cascaded one after the
other

– Leads to increased delay in hardware implementation and limits the maximum
frequency at which the IDCT block can be run

Figure
from
Ref [1]

275MHz100MHz

Max frequency in
Low-power 45nm
(with NO Pipeline)

0 for all
4 (for 32x32)
3 for (16x16)

Number of cascaded
multipliers

Matrix multiplication IDCTTMuC-0.9 Chen's IDCT

1/22/2011 13

JCTVC-D036

Number of multiplications and additions

• Bitwidth impacts cycles in software e.g. 32-bit multiplication v/s 16-bit
multiplication

-11682424404210ADDs

-8244300342116MULTs

MatMult
in HW

MatMult
in SWHM 1.0

MatMult
in HW

MatMult
in SWHM 1.0

1D 16-point transform1D 32-point transform

1/22/2011 14

JCTVC-D036

Complexity analysis – Hardware Area

• Area
– Example area numbers for 1D 32x32 transform implementation in RTL

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 50 100 150 200 250 300

MHz

K
g

Matrix (IDBI OFF)

HM 1.0-(IDBI OFF)

HM 1.0 (IDBI OFF) 1PL

1/22/2011 15

JCTVC-D036

Hardware considerations - Transistor sizing
• For area: Number of computations matter but number of cascaded operations

(critical path delay) in circuit matters too

• The more the number of cascaded operations (critical path delay) one needs
to finish in a cycle time, the bigger the transistors become

Matrix (IDBI OFF)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 50 100 150 200 250 300

MHz

K
g Matrix (IDBI OFF)

1/22/2011 16

JCTVC-D036

Conclusions

• Important to study both hardware and software implementation
complexity

– Something to think about: Are “Fast” DCTs really fast on today’s architecture?

• Contribution proposes specifying transforms using matrix multiplication
– Also achieves HEVC standard text compression ☺

• Contribution eliminates norm correction quantization matrices

• Our approach is highly parallel, good fixed-point behavior
– Good for hardware implementation

– Good for SIMD and VLIW architecture

• Recommend adoption of matrix multiplication transform specification
and scalar quantization into HM 2.0

1/22/2011 17

JCTVC-D036

DCT implementation by direct matrix
multiplication

1/22/2011 18

JCTVC-D036

DCT implementation using full even -odd
decomposition

